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Learning the language of viral evolution and escape
Brian Hie1,2, Ellen D. Zhong1,3, Bonnie Berger1,4*, Bryan Bryson2,5*

The ability for viruses to mutate and evade the human immune system and cause infection, called
viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that
govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms
originally developed for human natural language. We identified escape mutations as those that preserve viral
infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a
sentence’s grammaticality but change its meaning. With this approach, language models of influenza
hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data
alone. Our study represents a promising conceptual bridge between natural language and viral evolution.

V
iral mutations that allow an infection
to escape from recognition by neutral-
izing antibodies have prevented the
development of a universal antibody-
based vaccine for influenza (1, 2) or HIV

(3) and are a concern in the development of
therapies for severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) infection
(4, 5). Escape has motivated high-throughput
experimental techniques that perform causal
escape profiling of all single-residue muta-
tions to a viral protein (1–4). Such techniques,
however, require substantial effort to profile
even a single viral strain, and testing the es-
cape potential of many (combinatorial) muta-
tions inmany viral strains remains infeasible.
Instead, we sought to train an algorithm that

learns to model escape from viral sequence
data alone. This approach is not unlike learn-
ing properties of natural language from large
text corpuses (6, 7) because languages such as
English and Japanese use sequences of words
to encode complex meanings and have com-

plex rules (for example, grammar). To escape,
a mutant virus must preserve infectivity and
evolutionary fitness—itmust obey a “grammar”
of biological rules—and the mutant must no
longer be recognized by the immune system,
which is analogous to a change in the “mean-
ing” or the “semantics” of the virus.
Currently, computational models of protein

evolution focus either on fitness (8) or on func-
tional or semantic similarity (9–11), but we
want to understand both (Fig. 1A). Rather than
developing two separate models of fitness
and function, we developed a single model
that simultaneously achieves these tasks. We
leveraged state-of-the-art machine learning al-
gorithms called language models (6, 7), which
learn the probability of a token (such as an
Englishword) given its sequence context (such
as a sentence) (Fig. 1B). Internally, the lan-
guagemodel constructs a semantic representa-
tion, or an “embedding,” for a given sequence
(6), and the output of a language model en-
codes how well a particular token fits within
the rules of the language, which we call “gram-
maticality” and can also be thought of as “syn-
tactic fitness” (supplementary text, note S2).
The same principles used to train a language
model on a sequence of English words can
train a language model on a sequence of ami-
no acids. Although immune selection occurs
on phenotypes (such as protein structures),
evolution dictates that selection is reflected
within genotypes (such as protein sequences),
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Fig. 1. Modeling viral escape requires characterizing semantic change and
grammaticality. (A) Constrained semantic change search (CSCS) for viral escape
prediction is designed to search for mutations to a viral sequence that preserve
fitness while being antigenically different. This corresponds to a mutant sequence
that is grammatical (conforms to the structure and rules of a language) but has high
semantic change with respect to the original (for example, wild type) sequence.
(B) A neural language model with a bidirectional long short-term memory (BiLSTM)

architecture was used to learn both semantics (as a hidden layer output) and
grammaticality (as the language model output). CSCS combines semantic change
and grammaticality to predict escape (12). (C) CSCS-proposed changes to a news
headline (implemented by using a neural language model trained on English news
headlines) makes large changes to the overall semantic meaning of a sentence
or to the part-of-speech structure. The semantically closest mutated sentence
according to the same model is largely synonymous with the original headline.
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which language models can leverage to learn
functional properties from sequence variation.
We hypothesize that (i) language model–

encoded semantic change corresponds to
antigenic change, (ii) language model gram-
maticality captures viral fitness, and (iii) both
high semantic change and grammaticality help
predict viral escape. Searching for mutations
with bothhigh grammaticality andhigh seman-
tic change is a task that we call constrained
semantic change search (CSCS) (Fig. 1C) (12).
Our language model implementation of CSCS
uses sequence data alone (which is easier to
obtain than structure) and requires no explicit
escape information (is completely unsupervised),
does not rely on multiple sequence alignment
(MSA) preprocessing (is “alignment-free”), and
captures global relationships across an entire
sequence (for example, because word choice
at the beginning of a sentence can influence
word choice at the end) (supplementary text,
notes S2 and S3).
We assessed the generality of our approach

across viruses by analyzing three proteins: in-
fluenza A hemagglutinin (HA),HIV-1 envelope

glycoprotein (Env), andSARS-CoV-2 spike glyco-
protein (Spike). All three are found on the viral
surface, are responsible for binding host cells,
are targeted by antibodies, and are drug targets
(1–5).We trained a separate languagemodel for
each protein using a corpus of virus-specific
amino acid sequences (12).
We initially sought to understand the se-

mantic patterns learned by our viral language
models. We therefore visualized the semantic
embeddings of each sequence in the influenza,
HIV, and coronavirus corpuses using Uniform
Manifold Approximation and Projection (UMAP)
(13). The resulting two-dimensional semantic
landscapes show clustering patterns that cor-
respond to subtype, host species, or both (Fig. 2),
suggesting that the model was able to learn
functionally meaningful patterns from raw
sequence.
We quantified these clustering patterns,

which are visually enriched for particular sub-
types or hosts, with Louvain clustering (14) to
group sequences on the basis of their semantic
embeddings (fig. S1, A to C). We then mea-
sured the clustering purity on the basis of the

percent composition of the most represented
metadata category (sequence subtype or host
species) within each cluster (12). Average clus-
ter purities for HA subtype, HA host species,
and Env subtype are 99, 96, and 95%, respec-
tively, which are comparable with or higher
than the clustering purities obtainedwithMSA-
based phylogenetic reconstruction (Fig. 2, D
and F, and fig. S1D) (12).
Within the HA landscape, clustering pat-

terns suggest interspecies transmissibility. The
sequence for 1918 H1N1 pandemic influenza
belongs to the main avian H1 cluster, which
contains sequences from the avian reservoir
for 2009 H1N1 pandemic influenza (Fig. 2C
and fig. S1, A to C). Antigenic similarity be-
tween H1 HA from 1918 and 2009, although
nearly a century apart, is well supported (15).
Within the landscape of SARS-CoV-2 Spike
and homologous proteins, clustering proximity
is consistent with the suggested zoonotic
origin of several human coronaviruses (Fig.
2G), including bat and civet for SARS-CoV-1,
camel for Middle East respiratory syndrome-
related coronavirus (MERS-CoV), and bat and
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Fig. 2. Semantic embedding landscape is antigenically meaningful. (A and
B) UMAP visualization of the high-dimensional semantic embedding landscape of
influenza HA. (C) A cluster consisting of avian sequences from the 2009 flu
season onward also contains the 1918 pandemic flu sequence, which is
consistent with their antigenic similarity (15). (D) Louvain clusters of the HA
semantic embeddings have similar purity with respect to subtype or host species

compared with phylogenetic sequence clustering (Phylo). Bar height, mean; error
bars, 95% confidence. (E and F) The HIV Env semantic landscape shows
subtype-related distributional structure and high Louvain clustering purity. Bar
height, mean; error bars, 95% confidence. (G) Sequence proximity in the
semantic landscape of coronavirus spike proteins is consistent with the possible
zoonotic origin of SARS-CoV-1, MERS-CoV, and SARS-CoV-2.
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pangolin for SARS-CoV-2 (16). Analysis of these
semantic landscapes strengthens our hypothe-
sis that our viral sequence embeddings encode
functional and antigenic variation.
We then assessed the relationship between

viral fitness and language model grammatica-
lity using high-throughput deep mutational
scan (DMS) characterization of hundreds or
thousands of mutations to a given viral pro-
tein. We obtained datasets measuring repli-
cation fitness of all single-residue mutations
to A/WSN/1933 (WSN33) HA H1 (17), combi-
natorial mutations to antigenic site B in six
HA H3 strains (18), or all single-residue mu-
tations to BG505 and BF520 HIV Env (19), as
well as a dataset measuring the dissociation
constant (Kd) between combinatorial muta-
tions to yeast-displayed SARS-CoV-2 Spike
receptor-binding domain (RBD) and human

ACE2 (20), which we used to approximate the
fitness of Spike.
Languagemodel grammaticalitywas signifi-

cantly correlated (table S1, t-distribution P values)
with viral fitness across all viral strains and
across studies that examined single or combi-
natorial mutations (Fig. 3A), even though our
language models were not given any explicit
fitness-related information nor trained on the
DMS mutants. When we compared viral fit-
ness with the magnitude of mutant semantic
change (rather than grammaticality), we ob-
served significant negative correlation (table S1,
t-distribution P values) in 8 out of 10 strains
tested (Fig. 3A). This makes sense biologically
because a mutation with a large effect on func-
tion is on average more likely to be deleterious
and result in a loss of fitness. These results
suggest that “grammaticality” of a given mu-

tation captures fitness information and add
an additional dimension to our understand-
ing of how semantic change encodes perturbed
protein function.
We then tested whether combining seman-

tic change and grammaticality enables us to
predict mutations that lead to viral escape.
Our experimental setup involved making, in
silico, all possible single-residue mutations
to a given viral protein sequence; next, each
mutant was ranked according to the CSCS
objective that combines semantic change and
grammaticality. We validated this ranking on
the basis of enrichment of experimentally ver-
ified mutants that causally induce escape from
neutralizing antibodies. Three of these causal
escape datasets used a DMS with antibody se-
lection to identify escape mutations to WSN33
HA H1 (1), A/Perth/16/2009 (Perth09) HA H3
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Fig. 3. Biological interpretation of language model semantics and
grammaticality enables escape prediction. (A) Whereas grammaticality
is positively correlated with fitness, semantic change has negative correlation,
suggesting that most semantically altered proteins lose fitness. (B and
C) However, a mutation with both high semantic change and high grammaticality
is more likely to induce escape. Considering both semantic change and

grammaticality enables identification of escape mutants that is consistently
higher than that of previous fitness models or generic functional embedding
models. (D) Across 891 surveilled SARS-CoV-2 Spike sequences, only
three have both higher semantic change and grammaticality than a
Spike sequence with four mutations that is associated with a potential
reinfection case.
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(2), and BG505 Env (3). The fourth identified
escape mutations to SARS-CoV-2 Spike by
using natural replication error after in vitro
passages under antibody selection (5), whereas
the fifth performed a DMS to identify mutants
that affect antibody binding to yeast-displayed
Spike RBD (4).
We computed the area under the curve

(AUC) of acquired escapemutations versus the
total acquired mutations (12). In all five cases,
escape prediction with CSCS resulted in both
statistically significant and strong AUCs of
0.81, 0.73, 0.64, 0.85, and 0.57 for H1 WSN33,
H3 Perth09, Env BG505, Spike, and Spike RBD,
respectively (one-sided permutation-based P <
1 × 10−5 for H1, H3, Env, and Spike; P = 2 × 10−4

for Spike RBD) (Fig. 3B, and table S2). We did
not provide themodelwith any information on
escape, a setup inmachine learning referred to
as “zero-shot prediction” (7). The AUCdecreased
when ignoring either grammaticality or seman-
tic change, evidence that both are useful in
predicting escape (Fig. 3C, fig. S2A, and table
S2). Although semantic change is negatively
correlated with fitness, it is positively pre-
dictive (along with grammaticality) of escape
(table S2), indicating that functional muta-
tions are often deleterious, but when fitness is
preserved, they are associated with antigenic
change and subsequent escape from immunity.
We also tested how well alternative models

of fitness (each requiring MSA preprocessing)
(8, 21) or of semantic change (pretrained on

generic protein sequence) (9–11) predict es-
cape, although these models are not explicitly
designed for escape prediction. Fitness mod-
els associate more frequently observed pat-
terns with higher fitness and greater escape
potential, whereas semantic models associate
larger functional changes with escape (12).
CSCS with our viral language models was
more predictive of escape across all five data-
sets (Fig. 3B and fig. S2A). Moreover, the in-
dividual grammaticality or semantic change
components of our language models often out-
performed benchmark models (table S2).
Language modeling can also characterize se-

quence changes beyond single-residue muta-
tions, such as from accumulated replication
error or recombination (22), although our ap-
proach is agnostic to how a sequence acquires
its mutations. We therefore estimated the anti-
genic change and fitness of a set of four
mutations to the SARS-CoV-2 Spike associated
with a reported reinfection event (23). Among
891 other distinct, surveilled Spike sequences,
we found that only three (0.34%) represent
both higher semantic change and grammati-
cality (Fig. 3D). We estimate significant escape
potential of these four mutations (randommu-
tant null distribution P < 1 × 10−8) (12), and we
observed similar patterns for known antigen-
ically dissimilar sequences (fig. S2B) (12). Our
analysis suggests a way to quantify the escape
potential of interesting combinatorial sequence
changes, such as those from possible reinfec-

tion (23), and calls for more information that
relates combinatorial mutations to reinfection
and escape.
To further assess whether our model could

learn structurally relevant patterns from se-
quence alone, we scored each residue on the
basis of the CSCS objective, visualized escape
potential across the protein structure, and
quantified enrichment or depletion of escape
(12). Escape potential is significantly enriched
in theHAhead (permutation-basedP< 1 × 10−5)
and significantly depleted in the HA stalk
(permutation-based P < 1 × 10−5) (Fig. 4, A
and B; fig. S3; and table S3), which is con-
sistent with literature on HA mutation rates
and supported by the successful development
of antistalk broadly neutralizing antibodies
(24). We also detected, consistent with ex-
isting knowledge, a significant enrichment
(permutation-based P < 1 × 10−5) of escape
mutations in the V1/V2 hypervariable regions
of the HIV Env (Fig. 4, C and D; fig. S3; and
table S3) (3). Our model only learns escape
patterns linked tomutations, rather than post-
translational changes such as glycosylation that
contribute to HIV escape (3), which may ex-
plain the lack of escape potential specifically
assigned to Env glycosylation sites (Fig. 4C
and table S3).
The escape potential within the SARS-

CoV-2 Spike is significantly enriched in both
the RBD (permutation-based P = 2.7 × 10−3)
and N-terminal domain (permutation-based
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P < 1 × 10−5), whereas escape potential is
significantly depleted in the S2 subunit
(permutation-based P < 1 × 10−5) (Fig. 4, E
and F; fig. S3; and table S3). These results
are supported by the greater evolutionary con-
servation at S2 antigenic sites (25). Our model
of Spike escape therefore suggests that im-
munodominant antigenic sites in S2 (5, 25)
may be more stable target antibody epitopes
and underscores the need for more exhaus-
tive causal escape profiling of Spike in regions
beyond the RBD.
Our study leverages the principle that evo-

lutionary selection is reflected in sequence
variation. This principle may allow CSCS to
generalize beyond viral escape to different
kinds of natural selection (such as T cell se-
lection) or drug selection. CSCS and its com-
ponents could be used to select elements of a
multivalent or mosaic vaccine. Our techniques
also lay the foundation for more complex
modeling of sequence dynamics. We antici-
pate that the “distributional hypothesis” from
linguistics (26), in which co-occurrence pat-
terns can model complex concepts and on
which language models are based, can further
inform viral evolution.
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Learning the language of viral evolution and escape
Brian HieEllen D. ZhongBonnie BergerBryan Bryson

Science, 371 (6526), • DOI: 10.1126/science.abd7331

Natural language predicts viral escape
Viral mutations that evade neutralizing antibodies, an occurrence known as viral escape, can occur and may impede
the development of vaccines. To predict which mutations may lead to viral escape, Hie et al. used a machine learning
technique for natural language processing with two components: grammar (or syntax) and meaning (or semantics)
(see the Perspective by Kim and Przytycka). Three different unsupervised language models were constructed for
influenza A hemagglutinin, HIV-1 envelope glycoprotein, and severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) spike glycoprotein. Semantic landscapes for these viruses predicted viral escape mutations that produce
sequences that are syntactically and/or grammatically correct but effectively different in semantics and thus able to
evade the immune system.
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